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ABSTRACT
Sensing in low-light and dark environments has a wide range of
applications. However, existing sensing technologies suffer several
major challenges, such as excessive noise and low resolution. This
paper proposes Mozart - a new mobile sensing system that lever-
ages off-the-shelf Time-of-Flight (ToF) depth cameras to generate
high-resolution and rich-in-texture maps for applications in dark
scenarios. The design ofMozart is based on our key observation that
the phase components of ToF measurements can be manipulated
to expose texture information. Through in-depth analysis of the
physical reflection model, we show that the textures can be exposed
and enhanced using highly compute-efficient phase manipulation
functions. By exploiting the physics texture models, we propose an
autoencoder-based unsupervised learning approach that can auto-
matically learn efficient representations from phase components to
generate high-resolution maps. We implemented Mozart on several
Android smartphone models1, and an edge testbed with standalone
ToF camera platforms for various applications in the dark. The
results show that Mozart can work in real time and delivers signifi-
cant improvement over existing sensing technologies. Therefore,
Mozart offers a low-cost, high-performance sensing technology for
next-generation applications in the dark.

CCS CONCEPTS
• Hardware→ Displays and imagers; • Computing method-
ologies→ Appearance and texture representations; • Com-
puter systems organization→ Embedded and cyber-physical
systems.
1A demo video of Mozart smartphone App working in the dark is available at https:
//youtu.be/qBEffXVft_8.
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1 INTRODUCTION
Sensing in low-light and dark environments has a wide range of
applications, such as smart building, smart health, and robot navi-
gation. For example, a highly desirable feature of smart door locks
is automatic unlock via face recognition or secret hand gestures
in dark environments [31, 43]. Moreover, many health monitoring
systems and human activity recognition systems [52, 54, 62] re-
quire 7/24 sensing capabilities, e.g., detecting Sudden Infant Death
Syndrome (SIDS) during sleep using a smart baby monitor [63].

As summarized in Table 1, although there already exist many
sensing technologies that function to some extent in dark condi-
tions, they cannot meet the requirements of high-resolution sensing
applications. RF-based systems such as mmWave radar and Wi-Fi
are not interfered with by visible light. Unfortunately, their sensing
data are highly sparse [46, 58, 72], making them poorly suited for
applications that require high-resolution results such as human
faces and hand gestures. Thermal, IR, and depth cameras can work
in the dark. However, thermal cameras have limited resolution [28].
Although IR cameras can provide more detailed information, they
rely on strong IR emissions, which incur high power consumption
ranging from 5 to 20W [15, 61]. Moreover, off-the-shelf commercial
IR cameras suffer from the over-exposure effect when objects are
too close and can only capture image details within a short distance
(typically up to 5m [71]) due to the fast decay of light intensity [65].
ToF depth cameras have a more extended range and lower power
consumption and are increasingly embedded in smartphones or
used as standalone sensors for 3D applications. However, by design,
ToF depth cameras cannot capture most texture information of the
scene [66].

In this paper, we proposed Mozart, a novel sensing system that
leverages off-the-shelf ToF cameras to generate high-resolution
and rich-in-texture maps for dark scenarios. As shown in Figure 1,
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Sensing Technologies Modality Work in
the Dark? Cost Power Noise Typical Range

(with texture details) Texture Resolution

RGB Camera Visible Light No Low Low High 5m Low
mmWave Radar Radio Waves Yes Medium low Very High 0m Very Low
Thermal Camera Longwave Infrared Yes High High Medium 5m Low

IR Camera Near Infrared Yes Medium High Medium 5m Medium
ToF Camera Near Infrared Yes Medium Low High 5m Medium
Mozart (Ours) Near Infrared Yes Medium Low Low 10m High

Table 1: Comparison of various technologies for sensing in the dark.

Figure 1: Typical applications of Mozart in the dark sensing
scenario. In addition to the depth maps from ToF cameras,
Mozart also generates high-resolution and rich-in-texture
maps, which can significantly augment the performance of
sensing tasks in the dark.

Mozart maps can significantly augment the performance of various
sensing tasks in the dark. The design of Mozart is based on our key
observation that the phase components of ToF measurements can
be carefully controlled (which we refer to as “phase manipulation”)
to generate high-resolution maps with detailed textures [67]. To
design Mozart, we first present an in-depth analysis of the physical
reflection model for exposing texture information through phase
manipulation. Our key finding is that the textures can be exposed
and enhanced using highly compute-efficient phase manipulation
functions. Lastly, we propose an end-to-end autoencoder-based
unsupervised learning approach to automatically learn efficient rep-
resentations from the phase component maps to generate Mozart
maps. To train the deep autoencoder, we design three novel loss
functions by exploiting the physics models we proposed, including
the albedo similarity loss, the illumination attenuation loss, and the
uniform distribution loss. Our approach offers several key advan-
tages, including requiring no labeled training data and being highly
scalable in different applications without manual system tuning.

We implement Mozart on several Android smartphone models
and mainstream standalone ToF cameras. The results show that
Mozart maps can be generated in real time on smartphones due to
the extremely low overhead. Moreover, Mozart can generate high-
resolution maps at about 23 frames per second on edge computing
platforms, and is compatible with mainstream ToF cameras. We
evaluate the performance ofMozart using three new datasets we col-
lected in low-light and dark conditions, including human tracking,

face recognition, and gesture recognition, which involves a total
of 33 subjects and contains over 1,000,000 data frames. The results
show that Mozart maps outperform all baseline modalities (includ-
ing RGB, IR, depth, and mmWave Radar) in dark environments. For
example, in gesture recognition, Mozart outperforms RGB images,
mmWave Radar, and depth images by 93.4%, 88.46%, and 45.76%,
respectively. Moreover, compared with IR maps, Mozart delivers
a performance improvement of up to 29.1% with a substantially
smaller variance.

Our key contributions are summarized as follows:
• To the best of our knowledge, Mozart is the first low-cost, high-
performance sensing system to generate high-resolution maps
using a single off-the-shelf ToF camera in low-light and dark
environments.

• We provide an in-depth analysis of the physics models for expos-
ing and enhancing textures. Our key finding is that the textures
can be generated using highly lightweight phase manipulation
functions.

• By exploiting the physics texture models, we propose a deep
autoencoder-based texture generation approach that can auto-
matically learn efficient representations from phase maps to gen-
erate Mozart maps.

• We implement Mozart on several smartphone models as well as
edge platforms with mainstream ToF modules. Our evaluation
using three self-collected datasets in the dark shows that Mozart
outperforms existing baselines and can work in real time.

2 RELATEDWORK
Sensing Technologies for Applications in the Dark. Sensing in
the dark has a wide range of applications such as robot navigation,
face authentication, gesture recognition, and surveillance [43, 46,
47, 68]. Most of the current approaches in this area are based on
vision or RF sensors. RGB camera is a ubiquitous vision system
that cannot work in dark conditions [59]. Other vision sensors
such as thermal, IR, and depth cameras have shortcomings such as
low resolution [28], high power consumption [15, 61], and limited
texture exposure [66]. In particular, the intensity maps [39, 42]
collected by ToF cameras are essentially the IR maps collected by
IR cameras. RF-based sensing technologies such as mmWave radar
and Wi-Fi are not interfered with by visible light. Unfortunately,
their sensing results are highly sparse [46, 58, 72]. Compared with
these existing solutions, our system can produce high-resolution
images in the dark by extracting detailed textures from off-the-shelf
ToF cameras.
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(a) Capturing depthmaps of the
scene with a ToF camera

(b) Principles of iToF depth
cameras

Figure 2: ToF depth cameras obtain depth maps by emitting
and receiving the IR light to calculate the time of flight,
which is unaffected by the ambient light.

Image Enhancement in Low-light Conditions. There have been
extensive efforts to improve the RGB image quality in low-light
conditions. A multi-task learning framework is proposed in [22]
to explore the intrinsic pattern behind illumination translation
for object detection in poor light environments. Moreover, in [35],
thermal images are synthesized from RGB images with a Generative
Adversarial Network to enable monitoring in low-light conditions.
Recently, several studies have formulated the light enhancement of
RGB images as a deep curve estimation problem, which requires
the reference images as the input [29]. These approaches can not
work in fully dark conditions without any illumination. Moreover,
designed for RGB cameras, they can not be directly applied to ToF
cameras due to the fundamental differences between the two sensor
modalities.
ToF Augmentation. A family of techniques has been proposed for
depth image enhancement, most focused on improving the noise
models of ToF cameras for accurate distance measurement [40, 55,
70]. An energy-efficient epipolar imaging approach is proposed in
[14] to improve the robustness of depth measurement in extreme
scenarios, and the centimeter-wave and interferometric imaging are
utilized in [16] to enhance the precision of iToF cameras. A recent
work [66] illustrates the feasibility of extracting rich textures from
depth maps. However, it requires additional hardware, such as
an external IR emitter and distorts depth measurements during
texture exposure, making it incompatible with current depth-based
applications. In contrast, Mozart generates high-resolution texture
maps based entirely on-device sensing data processing. As a result,
it not only can be implemented on mainstream off-the-shelf ToF
cameras and ToF-enabled smartphones, but also can obtain high-
resolution texture maps and depth maps simultaneously.

3 BACKGROUND AND MOTIVATION
In this section, we introduce the basic principles of ToF sensing,
study the impact of phase component manipulation, and compare
the manipulated maps with IR maps to motivate our design.

3.1 Principles of ToF Depth Sensing
Depth measurement from time-of-flight. As shown in Figure
2a, a ToF depth camera emits IR light, illuminates the scene to be
captured, and receives the IR light reflected by the objects in the

scene. The distance is measured based on the fact that the round
trip time-of-flight (𝑡 ) of the IR signal between the scene and the
camera is strictly proportional to the distance. Specifically, we have
𝑡 = 2𝑑/𝑐 , where 𝑑 is the distance of the scene and 𝑐 is the speed
of light. Off-the-shelf ToF cameras fall into two categories based
on how the time-of-flight is measured: direct Time-of-Flight (dToF)
and indirect Time-of-Flight (iToF). Compared with dToF, iToF is
more suitable for 3D imaging applications due to its low cost and
high-resolution [66]. Most of the ToF modules on mobile devices
(especially Android smartphones) in the current market adopt the
iToF technology [21, 23]. Moreover, the iToF camera is expected to
account for the major share of the global ToF market in the next
decade [11]. Mozart is designed to work with iToF cameras, and all
ToF cameras in this paper refer to iToF cameras unless otherwise
indicated.
Measuring ToF based on received signal phase. The iToF cam-
era has two successive windows (in-phase and quadrature) to re-
ceive the reflected light and uses the phase shift of the returned
light to calculate the time of flight. Figure 2b illustrates the general
principle of calculating the phase shift in a ToF camera. The time
of flight 𝑡 can be calculated by:

𝑡 =
𝑁2

𝑁1 + 𝑁2
·𝑇𝑝 , (1)

where𝑇𝑝 is the width of the pulse,𝑁1, 𝑁2 are the amount of received
light in successive in-phase and quadrature windows, which we
refer to as phase components.

Besides the basic designs, mainstream off-the-shelf iToF cam-
eras also adopt several advanced techniques to mitigate the influ-
ence of ambient light on distance measurement. For example, the
continuous-wave iToF cameras take multiple samples per measure-
ment (i.e., using more than two windows) to calculate the phase
shift, which can reduce the energy offset caused by ambient light
during the process of each distance measurement [27]. For different
types of iToF cameras, we can always obtain the equivalent 𝑁1, 𝑁2
from their raw phase components.

3.2 A Motivation Study
Impact of Phase Components. As shown in Eqn. (1), the depth
measurements are calculated from the phase components (𝑁1, 𝑁2).
Moreover, calculating the depth of a point in the scene is equivalent
to the dimension reduction from 2-D (𝑁1, 𝑁2) to 1-D distance 𝑑 ,
which inevitably loses other information like textures. In other
words, the phase components contain more information about the
captured scene than the depth measurement. This key observation
provides opportunities for exposing detailed texture in the calcu-
lated map.

To validate this observation, we compare the depth measure-
ments and phase components for the points across a vertical line
of a human face in Figure 3a, where the blue curve denotes the
normalized depth values, and the orange and green curve denote
𝑁1 and 𝑁2 components, respectively. We observe that the depth
values are less volatile, while the phase components (𝑁1, 𝑁2) fluc-
tuate drastically. Moreover, for two points A and B with the same
distance from the ToF camera, they have totally different phase
components (𝑁1, 𝑁2). Therefore, by exploiting such information
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(a) The original depth map and values of
phase components

(b) The new depth map
obtained by shifting 𝑁1.

Figure 3: Compared to the depth map, the values of phase
components have larger fluctuations across the face. Adding
a shift to 𝑁1 when calculating depth using Eqn. (1) leads to
an image with fine-grained textures.

encoded in the phase components, it is possible to show detailed
texture information of different points in the scene.

We then conduct a simple manipulation operation on the phase
components to show the feasibility of exposing more texture infor-
mation about the scene. Specifically, we add a slight shift to𝑁1 when
calculating depth using Eqn (1). Figure 3b shows the resulting depth
map, which exhibits significantly finer-grained textures because
shifting 𝑁1 is equivalent to physically adding a well-modulated
interfering signal [66]. Next, we apply a commonly used object
detection model [13] to the original depth maps and the new maps
with simple phase component manipulation. The results show that
the human detection rate increases from less than 20% to more
than 90%. This result clearly shows the great potential of exposing
high-resolution textures from ToF cameras using phase manipula-
tion. Moreover, the generated maps can significantly improve the
performance of perception tasks, especially in the dark.
Limitations of Existing IR-based Methods. IR-based techniques
are mainstream solutions for providing detailed textures and sens-
ing in the dark. Most iToF cameras provide intensity maps [39, 42],
which are essentially the IR maps collected by IR cameras. However,
IR/intensity maps represent the amplitude of received IR signals
and cannot fully expose texture information because other factors,
like distance and scene structure, also affect the received signals. As
Figure 4 shows, IR maps collected by IR and ToF cameras have the
same key drawbacks. When an object is close to/far from the IR/ToF
camera, its texture details will be overwhelmed by saturation/lost
due to the extremely weak signal strength. In particular, adding
IR power to sense distant objects is infeasible on battery-sensitive
mobile platforms, such as smartphones.

We then examine the face detection rate on the IR images col-
lected by ToF cameras and compare them with the maps generated
by phase component manipulation. It turns out the detection rate
of IR images is merely 2% while the rate of manipulated maps is
more than 80%, which indicates that the performance of IR images
is significantly limited by distance. In contrast, the manipulated
maps suffer less from distance. Moreover, the IR maps collected by
the IR and ToF cameras show the same properties. Therefore, unless
otherwise indicated, we will not differentiate IR maps collected by
IR camera and ToF camera in the rest of this paper.

(a) Collected by IR cameras (b) Collected by ToF cameras

Figure 4: The IR maps collected by IR cameras and ToF cam-
eras both suffer over-exposure for near objects and under-
exposure for distant objects.

Summary. We now summarize the key observations on phase
component manipulation during ToF measurement. First, the orig-
inal depth maps are calculated using the phase components of
the received IR signal. However, the transformation from phase
components to depth suffers dimension reduction. In other words,
the phase components contain more information than the depth
map. Second, phase component manipulation can exploit such in-
formation and therefore expose more textures, which can be used
to augment the performance of various depth applications in the
dark. Moreover, phase component manipulation can overcome the
key shortcomings of traditional IR images, including short sens-
ing range due to rapid signal decay, significant noises, and the
over-exposure effect.

4 APPLICATION SCENARIOS
Mozart exploits the phase components of infrared light during
ToF measurements to expose high-resolution textures of the scene.
As current ToF modules adopt various measures to eliminate the
interference from ambient light, Mozart can work in all light condi-
tions. Nevertheless, we focus on sensing in the low-light and dark
environments in this work since there currently does not exist a
ubiquitous high-resolution vision technology in these challenging
conditions, i.e., the counterpart of RGB cameras in good lighting
environments. The robust high-resolution sensing in the dark has
many applications, e.g., longitudinal assessment of physical and
mental health [20, 30, 53] of elders or babies. In general, Mozart
can enable applications mainly in the following two manners.
Mozart-only applications. Thanks to its high-quality textures,
theMozart map alone can enable or augment various applications in
the dark. For example, ToF-based face recognition would typically
fail when the user’s face is away from the ToF camera more than 0.8
m due to the excessive noise of depth measurement. In such cases,
Mozart maps can be applied to augment face recognition, which is
an essential function for smartphones, smart door locks, and smart
surveillance systems [31, 32]. Besides, Mozart on mobile phones
can enable accurate facial expression recognition under all lighting
conditions to monitor the user’s emotional state, which enables a
more natural user interface adaptive to the user’s emotions [51].
Other representative applications in the dark include complex ges-
ture recognition [43], security surveillance [68], robot navigation
[46], etc. For instance, in a smart building embedded with depth
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Figure 5:Mozart is designed based on the physics models for exposing and enhancing textures through phase manipulation. The
high-resolution textures can be generated by both highly compute-efficient phase manipulation functions and an autoencoder-
based approach.

ToF cameras on the wall, users can use gestures to control lights
and other appliances, even in low-light and dark conditions.
Integration with depth map. The result of Mozart can not only
provide high-quality input for downstream applications but also
enable the integration of depth maps and rich-in-texture Mozart
maps for new 3D applications. First,Mozart maps can provide a new
mechanism for training machine learning models for depth data
in ToF-only systems. Specifically, the high-quality texture details
can generate accurate labels by directly leveraging CV algorithms,
which can be used for quickmodel trainingwithoutmanual labeling.
Second, the accuracy of perception tasks can be improved by fusing
the features of Mozart maps and depth maps. Finally, better 3D
structures of objects [73] can be captured by combining detailed
textures of Mozart maps and corresponding depth maps for ToF-
only modules.

5 SYSTEM ARCHITECTURE
Mozart features a novel approach called phase component manipu-
lation, which exploits effective mapping of the phase components
during ToF measurements (i.e., 𝑁1, 𝑁2 in Eqn. (1)) to generate the
high-resolution texture of the scene. Figure 5 shows the system
architecture of Mozart. Unlike other depth camera systems that
obtain depth maps directly, Mozart takes advantage of the phase
components (𝑁1, 𝑁2) during ToF measurements. As the theoretical
foundation ofMozart design, we first present an in-depth analysis of
the relationship between phase components and exposed textures
of the scene based on the physical reflection model for the received
IR light. Then we further introduce two techniques for enhancing
the exposed texture map, including redistribution of total reflection
outliers and compensation for illumination attenuation. Based on
these analyses, our key finding is that the textures can be exposed
and enhanced using highly compute-efficient phase manipulation
functions. Lastly, we propose an end-to-end unsupervised learning
approach, which employs an autoencoder to automatically learn
efficient representations from the phase component maps to gener-
ate Mozart maps. Specifically, the autoencoder neural network first
converts the phase components into deep latent space and then

reconstructs high-dimension Mozart maps from the deep embed-
dings. To train the deep autoencoder, we design three novel loss
functions by exploiting the physics models for texture exposure
and enhancement we proposed, including the albedo similarity loss,
the uniform distribution loss, and the illumination attenuation loss.
Combining these learning objectives, the autoencoder-basedMozart
can effectively generate high-resolution texture maps for various
scenes and applications. Our approach has several key advantages.
First, the autoencoder is trained in an unsupervised manner, which
does not require any manual labeling or reference images. Second,
the autoencoder is scalable in generating various high-resolution
Mozart maps, as it can be directly applied to different applications
without manual system tuning.

6 METHODOLOGY
This section illustrates how to expose and enhance detailed tex-
tures from ToF phase components. To this end, we first propose
a first-principle physics model in Section 8.3, which provides the
theoretical foundation for our texture exposure approaches in the
ToF system. Then we introduce two specific techniques to further
enhance the exposed texture information, i.e., compensation for
illumination attenuation and redistribution of total reflection out-
liers. With the help of the physics texture model, highly compute-
efficient phase manipulation functions for exposing and enhancing
textures are proposed in Section 6.2. We provide typical examples
of lightweight manipulation functions and guidance in selecting
effective functions for different applications. Lastly, we propose
an end-to-end autoencoder-based texture generation implementa-
tion by designing highly effective learning objectives according
to the physics models in Section 6.3, which automatically learns
efficient representations from 𝑁1, 𝑁2 maps. Even though both im-
plementations are based on our physics model, the lightweight
approach is the best choice when computing resources are limited,
and the autoencoder-based method performs the best in dynamic
and complex scenes.
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(a) Lambertian reflec-
tion model. (b) Pixel value over the map.

Figure 6: (a) The reflected IR intensity is determined by
both reflectivity and incidence angle of light. These two fac-
tors together form the textures of objects, which we refer
to as albedo 𝛽. (b) The mapping functions that are albedo-
monotonic can expose textures of the scene and vice versa.

6.1 Physics Model for Exposing Textures
In this section, we propose a physics model and leverage it to expose
and enhance detailed textures from ToF phase components.

6.1.1 Modeling Textures Using Phase Components. As introduced
in Section 3.1, the phase components of ToF measurements may
vary for the points at the same distance due to objects’ texture,
thereby essentially encoding detailed texture information besides
the distance. Therefore, we need a physics model to guide the ma-
nipulation of phase components of ToF measurements for revealing
texture information and augmenting ToF sensing in the dark. As
we know, the IR light emitted by the ToF camera will be diffusely
reflected by the surface of objects in most cases. Therefore, we
leverage the Lambertian reflection model (Figure 6a) [56] to model
the process of reflection, in which the amount of received IR light
reflected by the object at a distance 𝑑 can be calculated by:

𝐸𝑑 =
𝐸0𝛼 cos𝜃

8𝑑2
=
𝐸0𝛽

8𝑑2
, (2)

where 𝐸0 is a constant determined by the emission power of the
ToF camera, 𝛼 is the reflectivity of the object and 𝜃 is the angle
of incidence. We can see that the intensity of received light is
determined by objects’ reflectivity 𝛼 , the incidence angle 𝜃 , and
the distance 𝑑 . The former two factors together form the textures
of objects [69]. In this paper, we define a new variable, “albedo”
𝛽 = 𝛼 cos𝜃 , to quantify the two factors on the object side that have
an impact on the intensity of the received light.

Based on Eqn. (2) and the physical meaning of𝑁1,𝑁2 (see Section
3.1), we can establish the relationship between the phase compo-
nents and the texture information 𝛽 :

𝑁1 =
𝐸0
8𝐷

· 𝛽 (𝐷 − 𝑑)
𝑑2

, 𝑁2 =
𝐸0
8𝐷

· 𝛽
𝑑
, (3)

where 𝐷 is the ToF camera’s range of measurement. Note that 𝐸0, 𝐷
are all constants, thus 𝑁1, 𝑁2 are functions of albedo 𝛽 and distance
𝑑 , namely 𝑁1 = 𝑛1 (𝛽, 𝑑), 𝑁2 = 𝑛2 (𝛽, 𝑑). Therefore, the goal of phase
(i.e., 𝑁1, 𝑁2) manipulation in Mozart is to find an optimal way of
combining albedo 𝛽 and distance 𝑑 to augment texture information
as much as possible for applications in the dark.

Figure 7: Left: In a typical texture map, the near region is
brighter while the far is dark. Right: The averaged intensity
of received light decreases drastically with the distance.

6.1.2 Exposing Textures: Albedo-monotonic. Given the above physics
model, we show how to manipulate the phase components 𝑁1, 𝑁2
to expose textures effectively. We formulate the phase component
manipulation problem as a mapping from a 2-D vector to a scalar
as:

𝑓 (𝑁 𝑖
1, 𝑁

𝑖
2) → 𝑆𝑖 , (4)

where 𝑖 is the index of a pixel in themap, and 𝑆𝑖 is the corresponding
scalar in the resulting map. The function 𝑓 (·) will be applied to
every pixel in the whole map.

The original depth maps do not contain detailed texture informa-
tion because points with the same distance 𝑑 but different albedos
𝛽 can not be differentiated. Therefore, to expose detailed texture
information, the phase components mapping 𝑓 (·) should keep the
same order as albedo 𝛽 , which means that the pixel with larger
𝛽 will always have a larger value after the mapping. In this way,
for any two points A and B with the same distance 𝑑 in the scene,
if 𝛽𝐴 < 𝛽𝐵 , the mapping should have 𝑓 (𝑁𝐴

1 , 𝑁
𝐴
2 ) < 𝑓 (𝑁𝐵

1 , 𝑁
𝐵
2 ).

Therefore we have 𝜕𝑓 (𝑁1,𝑁2 )
𝜕𝛽

> 0. Combining with Eqn. (3), we
have the following constraints of the phase manipulation mapping:

𝜕𝑓 (𝑁1, 𝑁2)
𝜕𝑁1

(𝐷 − 𝑑) + 𝜕𝑓 (𝑁1, 𝑁2)
𝜕𝑁2

𝑑 > 0 (5)

Eqn. (5) ensure that the transformed result 𝑓 (𝑁1, 𝑁2) is monoton-
ically increasing in terms of albedo 𝛽 at a given distance 𝑑 , which
we refer to as albedo-monotonic. Such monotonicity keeps the same
structure in the transformed map as the albedo map, thus exposing
detailed textures without introducing any artifacts (see Figure 6b).
It is worth noting that if the inequalities in Eqn. (5) are completely
opposite to the current ones, the monotonicity will still hold. How-
ever, the texture structure in the transformed map will be reversed
to albedo, resulting in “negative images” [34]. For example, negative
images are useful for enhancing white or grey detail embedded in
dark regions of an image. Moreover, Eqn. (5) is a sufficient but not
necessary condition, which means all transformations that meet
this constraint can effectively expose textures.

6.1.3 Enhancing Textures: Illumination Compensation. According
to Eqn. (3), the phase components 𝑁1 = 𝑛1 (𝛽, 𝑑) and 𝑁2 = 𝑛2 (𝛽, 𝑑)
decrease with the distance. Therefore, as shown in Figure 7, in
a typical map generated by phase manipulation, the near objects
will be much brighter than distant objects, reducing the utility of
distant points of the image. More specifically, the average intensity
of received light decreases drastically with the distance. Therefore,
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Figure 8: Redistribution of outliers reduces the influence of
total reflection and reveals more textures.

in this section, we propose to compensate for the illumination
attenuation introduced by longer distances to further enhance the
exposed textures during phase manipulation. To achieve this, we
can remove 𝑑 from Eqn. (3) and obtain the following function:

𝑔(𝑁1, 𝑁2) =
𝑁 2
2

𝑁1 + 𝑁2
=

𝐸0
8𝐷2 · 𝛽, (6)

where 𝐸0, 𝐷 are all constants, which means that the transformed
result by Eqn. (5) will not be affected by the distance while only
related to the texture information 𝛽 . Moreover, 𝑔(𝑁1, 𝑁2) strictly
satisfies the constraints of exposing textures in Eqn. (5). Therefore,
the function 𝑔(𝑁1, 𝑁2) can correct illumination attenuation intro-
duced by the distance of objects 𝑑 while enhancing the detailed
textures of the scene.

6.1.4 Enhancing Textures: Redistribution of Outliers. Based on the
physics model proposed in Section 6.1.2, we are able to expose
texture information through ToF phase manipulation. In practice,
there will always exist total reflection on the surface of certain
objects, such as metals and glass. Therefore, the points with total
reflection will not satisfy the Lambertian reflection model in Eqn.
(2), and the corresponding 𝑁1, 𝑁2 received by the ToF camera will
far exceed the normal values. For example, a typical value of 𝑁2 is
less than 100, while the 𝑁2 value of total reflection can be more than
1,000. Then the mapping results of these outliers through the non-
decreasing functions defined in Eqn. (5) will also exceed the normal
range. As shown in Figure 8, if we normalize the texture map to
grayscale, most of the pixels will be squeezed into a small range
near 0, while the points with total reflection exhibit isolated bright
spots. Therefore, in this section, we introduce how to enhance the
exposed textures during phase manipulation by redistributing the
total reflection outliers.

To alleviate the impact of outliers introduced by total reflections,
we should expand the dense value around 0 and compress the sparse
outliers with large values. To achieve this, we add a new mapping
𝑟 (𝑆) outside the function 𝑓 (·) defined in Eqn. (5), where 𝑆 denotes
the transformed result of 𝑓 (𝑁1, 𝑁2). Here the continuous function
𝑟 (𝑆) must be monotonically increasing, and the rate of increase
gets smaller with the pixel value 𝑆 . Figure 8 shows an example
of the redistribution function r(S), where the dense distribution
at 0 can be expanded, and the sparse distribution at larger values

(a) 𝑓0 = 𝑁2/𝑁1. (b) 𝑓1 = 𝑁1𝑁2/(𝑁1 + 𝑁2 ) . (c) 𝑓3 = 𝑁1𝑁
2
2 .

Figure 9: The functions with large polynomial degrees will
turn normal values into outliers, resulting in over-exposure.

can be squeezed. Therefore, 𝑟 (𝑆) can limit the bound of higher
outlier values. The lower part of Figure 8 shows the texture map
before and after the redistribution of phase manipulation, where
the manipulated map after redistribution has a substantially higher
contrast and more uniform distribution of pixel values.

6.2 Light-weight Phase Manipulation
Given the physics model and principles of exposing and enhanc-
ing textures proposed in Section 6.1, we introduce how to design
efficient functions 𝑓 (𝑁1, 𝑁2) in practice to expose textures.
Selecting functions for texture exposure. The first stage of de-
signing efficient phase manipulation functions is to check whether
the candidate functions are albedo-monotonic. In Figure 9, we
show the generated maps by applying the following functions:
𝑓0 (𝑁1, 𝑁2) = 𝑁2

𝑁1
, 𝑓1 (𝑁1, 𝑁2) = 𝑁1 ·𝑁2

(𝑁1+𝑁2 ) , 𝑓3 (𝑁1, 𝑁2) = 𝑁1𝑁 2
2 , where

𝑓1, 𝑓3 satisfy Eqn. (5) while 𝑓0 does not. We observe that 𝑓0 cannot
expose textures of the scene while both 𝑓1, 𝑓3 can, which is con-
sistent with the principle we proposed in Section 6.1. However,
the number of functions that are albedo-monotonic is enormous.
To efficiently select proper functions, we propose to check the
polynomial degrees of candidate functions. It can be easily seen
that the polynomial degrees of 𝑓0, 𝑓1, 𝑓3 with respect to 𝑁1, 𝑁2 are
0, 1, 3, respectively. Moreover, the generated map 𝑓3 exhibits an
over-exposure effect, thus reducing the quality of exposed textures,
which indicates that the functions with larger polynomial degrees
amplify many normal values to larger values. Therefore, besides
satisfying Eqn. (5), an effective function 𝑓 (·) to expose textures
should not have a large polynomial degree with respect to 𝑁1, 𝑁2.
Selecting functions for illumination compensation. To com-
pensate for the illumination attenuation of the texture maps, the
functions 𝑓 (𝑁1, 𝑁2) could be the variant of 𝑔(𝑁1, 𝑁2) = 𝑁 2

2 /(𝑁1 +
𝑁2) or itself. Moreover, based on the observations in Section 6.2,
the degree of polynomials for the manipulation function should not
be too large. Therefore, to compensate for the illumination attenua-
tion during phase manipulation, we can choose to use 𝑓 (𝑁1, 𝑁2) =
𝑔(𝑁1, 𝑁2) directly or a linear transformation of 𝑔(𝑁1, 𝑁2) in most
common scenarios. Note that the Eqn. (6) is derived under the
inverse-square law assumption, which may be distorted in real-
world systems and complex environments. Therefore, 𝑔(𝑁1, 𝑁2) is
not necessarily the optimal function for illumination compensation.
Selecting Redistribution Functions.Nowwe show how different
redistribution functions 𝑟 (𝑆) affect the generated maps. Here we
give three examples of redistribution functions that satisfy the re-
quirements defined in Section 6.1.4, including 𝑟1 (𝑆) =

√
𝑆 , 𝑟2 (𝑆) =

𝑙𝑛(𝑆) and 𝑟3 (𝑆) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑆). For the same outlier 𝑆0 = 3, 000,
𝑟1 (𝑆0) = 54.7, 𝑟2 (𝑆0) = 8.00, 𝑟3 (𝑆0) = 1.57. We can see that different
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Figure 10: The autoencoder can learn efficient representa-
tions from 𝑁1, 𝑁2 maps to generate robustMozart maps for
different applications. The loss functions are designed based
on the physics models in Section 6.1.

functions 𝑟 (𝑆) have different redistribution performances for larger
pixel values introduced by total reflection outliers. For those sce-
narios where the total reflection is strong, we can select functions
like 𝑟3 (𝑆) to better redistribute the total reflection outliers. On the
contrary, we can choose a more mild function like 𝑟1 (𝑆) so that the
distribution will not affect the pixels with typical values.

6.3 Autoencoder-based Phase Manipulation
The function-based texture generation in Section 6.2 requires care-
ful design and manual tuning for different applications, which is
labor-intensive and requires substantial domain expertise. There-
fore, we propose an end-to-end autoencoder-based texture genera-
tion approach, which automatically learns efficient representations
from 𝑁1, 𝑁2 maps. Our key idea is to utilize the physics models
for texture exposure and enhancement proposed in Section 6.1 to
design highly effective learning objectives for the autoencoder.

Our approach has several key advantages. First, the autoencoder
neural network is trained in an unsupervised manner, which does
not require manual labeling or reference images, in contrast to
previous supervised image enhancement solutions [48]. Second, by
exploiting the physics models for texture exposure and enhance-
ment proposed in Section 6.1, we design several effective loss func-
tions to train the deep autoencoder neural network. As a result,
the autoencoder can output high-resolution texture maps without
introducing artifacts or large noises. Third, due to the convolutional
layers, autoencoder-based methods can capture local spatial infor-
mation within the receptive field of convolutional kernels. Finally,
compared with the manually crafted manipulation functions, the
autoencoder network is more scalable in generating high-resolution
Mozart maps for different applications. For example, for the two
applications (e.g., human tracking and gesture recognition) with
different outlier distributions or IR illumination attenuation effects,
the autoencoder-based texture generation can be directly applied
without any modification or manual system tuning.

6.3.1 Autoencoder Design. Autoencoder is a widely-used unsuper-
vised learning approach in computer vision tasks that can learn
efficient features from unlabeled data [37, 50].We use a deep autoen-
coder neural network as a generative model to adaptively generate

high-resolution Mozart maps from 𝑁1, 𝑁2 maps. As shown in Fig-
ure 10, the autoencoder neural network has two main components:
the encoder and the decoder network. During the training of the
deep autoencoder, the phase component 𝑁1, 𝑁2 maps will be input
to the neural network. Then the encoder network maps the input
𝑁1, 𝑁2 maps into deep latent space, and the decoder network recon-
structs high-dimension Mozart maps from the deep embeddings. In
this way, the autoencoder neural network can learn invariant fea-
tures underlying the 𝑁1, 𝑁2 maps collected from different scenarios
[44]. We use a 3D-CNN for the encoder and decoder to explore
the inter-channel relationships between 𝑁1, 𝑁2 maps. Finally, the
output maps will be used to calculate the unsupervised training
loss, where the loss functions are designed based on the physics
models for texture exposure and enhancement in Section 6.1.

The goal of training the autoencoder neural network is to learn ef-
ficient representations automatically from 𝑁1, 𝑁2 maps to generate
high-resolution texture maps. Therefore, similar to the lightweight
mapping function in Section 6.2, the autoencoder is trained to ex-
ploit efficient manipulations to the phase components for exposing
texture information.

6.3.2 Design of Loss Functions. To train an autoencoder neural
network that can generate high-resolution texture maps, we care-
fully design three loss functions according to the physics models
proposed in Section 6.1, including the albedo similarity loss, the illu-
mination attenuation loss, and the uniform distribution loss. Suppose
P denotes the Mozart output of the autoencoder neural network.
We design the three loss functions as follows.
Albedo similarity loss. Unlike the lightweight phase manipula-
tion functions that can maintain the pixel topology of 𝑁1, 𝑁2 maps,
the neural network-based method is more like a black box, which
may generate artificial textures that do not exist in the actual scene.
As shown in Section 6.1, the albedo map calculated by the manipu-
lation function 𝑓 (·) contains textures of the scene. Therefore, we
use the structural similarity [64] between the Mozart output and
the corresponding albedo map to guide the training of the Mozart
Autoencoder model. Suppose B denotes the albedo map, then the
albedo similarity loss is calculated as follows:

L𝑆 = 1 − 𝑆 (P,B), (7)

where 𝑆 (X,Y) ∈ [0, 1] denote the structural similarity index of two
images X and Y. A larger 𝑆 (X,Y) means more similarity between
the map X and Y.
Illumination compensation loss. As shown in Section 6.1.3, the
phase components 𝑁1 and 𝑁2 decrease with the distance, making
the near objects much brighter than distant objects. Therefore, we
propose an illumination compensation loss to penalize the high-
intensity pixels near the ToF camera.

By design, the depth maps have larger distance values for distant
objects and smaller distance values for close objects. Therefore, the
depth maps (or maps positively correlated to distance) can serve
as a reference kernel to correct the uneven light field of Mozart
output. Moreover, as the depth maps usually have lots of noises
that can affect the quality of generated Mozart maps, we use the
denoised depth maps D after median filter [19] to calculate the light
compensation loss:

L𝐿 = ∥P ◦ D∥1, (8)
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Phone Model ToF Camera(s) ToF API Resolution

Huawei P30 Pro rear AREngine 240 × 180
Huawei Mate30 Pro rear & front AREngine 240 × 180
Samsung S20 Ultra rear ARCore 640 × 480

Table 2: Summary of the mobile phones with Mozart im-
plemented. The resolution refers to the typical resolution
obtained through the corresponding API (instead of the phys-
ical resolution of the ToF sensor on the mobile phone). All
resolutions in the table are sufficient for typical applications
such as faceID at reasonable distances.

where ◦ denotes the Hadamard product.
Uniform distribution loss. As shown in Section 6.1, the outlier
values introduced by total reflection will distort the distribution uni-
formity. However, when the histogram of a map is uniform across
the entire value range, the map will have a higher contrast [57].
This feature is also friendly to many existing object detection and
tracking algorithms [41, 45]. Therefore, consistent with the redistri-
bution function in Section 6.1.4, we design a uniform distribution
loss by minimizing the negative histogram entropy for the output
map:

L𝑈 =

255∑︁
𝑐=0

𝑝𝑐 (P) log𝑝𝑐 (P), (9)

where we change the generated map to grayscale with the value
range [0, 255] and 𝑝𝑐 (·) is the normalized histogram counts of value
𝑐 for a map.
Overall Training Loss Function. Putting the above three loss
functions together, the overall loss function for training the autoen-
coder neural network is:

L = 𝜆𝑠L𝑆 + 𝜆𝑙L𝐿 + 𝜆𝑢L𝑈 (10)

Here 𝜆𝑠 , 𝜆𝑙 , 𝜆𝑢 are the coefficients that weigh the contribution of
each loss function and can be adjusted easily in different applica-
tions. For example, when the depth maps are very noisy, we can set
a smaller 𝜆𝑙 to reduce the impact of depth on the light compensation,
leading to smaller noise in the generated Mozart maps.

7 SYSTEM IMPLEMENTATION AND
OVERHEAD

7.1 Implementation on Various Platforms
Smartphones Platforms. A number of smartphones (e.g., Huawei
P/Mate series, Samsung S/Note series) are equipped with ToF cam-
eras for various applications such as FaceID, In-Air Gesturing, and
AR/VR. We first implement Mozart on three off-the-shelf smart-
phones with embedded ToF cameras, whose specifications are
shown in Table 2. To demonstrate the real-time performance of
Mozart, we built an Android App (Figure 11a) that can help users
identify objects under dark environments. The demo video (https:
//youtu.be/qBEffXVft_8) shows that, compared with depth maps,
the Mozart App can provide substantially more texture details in
the dark environment in real time.

(a) Real-time Android App. (b) Three ToF modules.

Figure 11: Implementation of Mozart with smartphones and
standalone ToF cameras.

The raw phase components from ToF cameras are not available
on Android smartphones. To address this challenge, we calculate
the phase components indirectly from depth and intensity maps
(i.e., the confidence maps in Android documentation), which can
be obtained from all Android smartphones using Camera2 API
[4]. Moreover, smartphones from a few manufacturers provide
dedicated ToF APIs to access the ToF data. For example, AREngine
[3] available on Huawei devices can provide 3-bit confidence maps
and 13-bit depth maps. ARCore [2] available on Google-certified
models such as Samsung S20 Ultra can provide 8-bit confidence
maps and 16-bit depth maps. After obtaining the phase components,
we calculate theMozart maps usingmanually designed functions on
the phones for downstream applications.Mozart on smartphones is
implemented using Java on Android Studio. Note that the latency of
generating a single Mozart map on all three smartphones is merely
around 15 ms (see Figure 12a), thus enabling real-time applications.
Edge Platforms.Wealso implementMozart with threemainstream
standalone ToF depth cameras (Figure 11b), including DMOM2508
[26], Vzense DCAM710 [12], and DepthEyeWide ToF [5], on Nvidia
Jetson Xavier [7]. The DepthEye ToF camera adopts an IMX556PLR
CMOS from Sony, from which we can easily obtain the phase com-
ponents of ToF measurements directly via APIs. The phase compo-
nents of the other two ToF cameras need to be calculated indirectly
from depth maps and intensity maps. Mozart on Nvidia Xavier
(running Ubuntu 18.04) is implemented using C++ and Python.

On edge platforms, we implement two different texture gener-
ation approaches, including Mozart-manual, where we manually
select the best functions for different applications according to the
principles proposed in Section 6.2, and Mozart, where we train the
autoencoder neural network using the loss functions defined in
Section 6.3. We note thatMozart-manual requires substantial efforts
and domain expertise to choose a proper function in a trial-and-
error manner. Moreover, such a labor-intensive process must be
repeated for different applications. On the contrary, the proposed
autoencoder can automatically learn efficient representations from
phase components to generate texture maps while achieving similar
performance with Mozart-manual.

7.2 System Overhead
In this section, we evaluate the system overhead of Mozart on
three smartphones and Nvidia Jetson Xavier with three mainstream
standalone ToF modules. First, we developed a smartphone App
to classify facial expressions from a typical expression set [60]
(i.e., angry, disgust, fear, happy, sad, surprise, and neutral) under
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(a) Generating depth, Mozart maps, and inference with Mozart maps on smartphones. (b) Generating maps on Jetson Xavier.

Figure 12: System overhead on smartphone and edge platforms.

different illumination conditions2. Results show that Mozart on
smartphones outperforms depth maps by 20% and IR maps by 40%
in mean recognition accuracy. We further implemented an object
detection task on Nvidia Xavier with the three ToF modules. The
results indicate that the performance improvement of Mozart maps
is significant for all ToF cameras. Specifically, on the Vsenze ToF
camera, Mozart outperforms depth and IR maps by 63.76% and
45.28%, respectively.
System Overhead on Smartphones. We compare the system
overhead of the native ToF system, Mozart-manual, and inference
with Mozart maps in terms of latency, power consumption, and
memory usage. We use PerfDog [8] to measure the overall power
consumption and memory usage of each task on three smartphones.
The results are shown in Figure 12a. First, the latency of calculating
a single Mozart map on mobile phones is smaller than 14.5 ms,
which can easily support real-time applications with a frame rate
of 30 fps. Moreover, calculating Mozart maps does not significantly
increase any resource consumption, including power consumption
and memory usage. It is worth noting that the average latency for
each major step (i.e., sensor sampling, phase components calcula-
tion, and Mozart map generation) is 0.06 ms, 10.92 ms, and 7.13 ms,
respectively. The fact implies that the latency can be significantly
improved if Mozart can access native phase components through
APIs since there is no phase components calculation. Moreover,
the image quality of Mozart can also be improved thanks to more
accurate native phase components.
System Overhead on Edge Devices. We compare Mozart against
Mozart-manual and the native depth system that generates depth
maps from ToF phase components. As discussed earlier, Mozart-
manual is designed by an extensive search of compute-efficient
texture generation functions, which requires substantial efforts and
domain expertise. As a result, the computing overhead of Mozart-
manual at runtime is expected to be smaller than autoencoder-
based Mozart. During the end-to-end experiments, we measure the
averaged computation time and power consumption for obtaining
onemap frame. The power consumption is obtained using tegrastats
[9] provided by Nvidia.

The results are shown in Figure 12b. First, Mozart-manual out-
performs the native depth system in computation time and power
consumption. This shows that the phase manipulation functions
we designed for Mozart-manual are more efficient than the built-in

2All the data collection involving human subjects was approved by IRB of the authors’
institution.

transformation of phase components to depth maps. Specifically,
Mozart-manual produces each frame in merely 43.5ms, i.e., at a
rate of about 23 fps, which allows it to be executed in real time on
embedded platforms. The autoencoder-based Mozart takes more
time and power consumption, while it can still achieve about 12
fps, which is acceptable in most depth applications [33, 66]. We
note that the system overhead can be further reduced by various
existing techniques [49], including optimizing the computation
pipeline in a hardware-software co-optimization and adopting a
sparse autoencoder, which is left for future work.

8 COMPARISONWITH OTHER SENSOR
MODALITIES

In this section, we compare Mozart with the baseline systems that
employ the following sensor modalities: RGB, RGB-enhanced,
Depth, IR andmmWaveRadar , using three new real-world datasets
collected in dark environments. The RGB-enhanced maps are gen-
erated by Zero-DCE [29], a state-of-the-art image enhancement
approach from computer vision literature.

8.1 Data Collection in the Dark
The reasons for collecting the new datasets are as follows. First,
existing depth camera-based datasets do not contain corresponding
samples of other sensor modalities. Besides, there are few mul-
timodal datasets (including RGB/Depth/IR/Radar) collected un-
der dark environments, which is the main application scenario
of Mozart. The three datasets consist of over 1,000,000 frames with
a total of 33 subjects.

For a fair comparison, we collect the data of all these sensors
and the ToF phase components simultaneously at 10 Hz. The RGB
images are collected using the Vzense camera [12], and the IR/depth
images are collected using the DepthEye ToF camera [5]. The radar
point clouds are collected using a 60-64GHz mmWave radar TI
IWR6843 [10]. We convert the IR, RGB, RGB-enhanced, Depth, and
Mozart maps to the same dimension (640, 480) and apply the same
models to them for each task. We convert each frame of radar points
into voxels of a fixed dimension (2, 16, 32, 16) and apply existing
detection or classification models in each task.
Human tracking dataset. Continuous human tracking in the dark
is a typical task in applications like security surveillance, which
need to capture high-resolution textures of the scene. As shown in
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(a) Human tracking (b) Face recognition (c) Gesture recognition

Figure 13: Experiment settings of different datasets. The pho-
tos are taken using iPhone XR camera with default mode.

Figure 13a, we collect a real-world human tracking dataset under
low-light conditions in three different environments (i.e., square,
room, and corridor). The volunteers are asked to walk freely within
10 m away from the sensors. In each environment, we collect data
under single-person and multi-person settings (where 2, 3, and
4 persons appear simultaneously). In total, we collect over 8,000
frames from nine subjects for each modality.
Face recognition dataset. Face recognition in the dark is impor-
tant for user authentication, e.g., for smartphones or smart doors.
However, existing technologies such as Apple’s FaceID can only
work in close range (e.g., 0.8m) [1]. In this case, Mozart can boost
the performance at a significantly longer distance. As shown in
Figure 13b, we collect a face recognition dataset in a dark room.
We recruit 12 volunteers and ask them to sit in front of the sensors
at a distance of 1 m (the near setting) and 2 m (the far setting),
respectively. We also collect data under four different illumination
conditions by adjusting the lights in the room. We totally collect
over 15,000 data frames of data for each modality.
Hand gesture recognition dataset. Hand gesture recognition is
important in human-computer interaction applications (e.g., con-
trolling smart home appliances). However, due to the small dimen-
sions of hand gestures, it is extremely difficult to achieve robust
performance in the dark. As shown in Figure 13c, we collect a hand
gesture dataset in a dark room. We recruit 12 volunteers and ask
them to perform 20 different gestures, including calling, dislike,
like, victory, fist, ok, one, three, four, palm, rock, stop, mute, crossed
fingers, no, pause, grabbing, gun, pointing, and holding up. The
gestures are collected at a distance of 1.5 m from all sensors.

8.2 Accuracy in Different Applications
We first compare Mozart against different sensing approaches for
the three datasets in the dark. For the human tracking task, we
use a widely-used object detector YOLOv5 [13] to detect the per-
sons in each frame, which will output the predicted objects and
the prediction confidence for each object. However, this evalua-
tion is not applicable to radar point clouds as they do not support
semantic-based tasks due to the data sparsity. Therefore, the radar
baseline in this experiment only tracks moving objects in the scene
without detecting the type of objects (i.e., the person). For the face
recognition task, we first detect the faces in the image maps using
a pre-trained RetinaFace detector [24]. Then a pre-trained ArcFace
[25] model transforms the detected face areas into 512-dimension
feature vectors. For a fair comparison, we directly trained a neural

network on the detected face areas in depth maps instead of apply-
ing ArcFace. Moreover, the accuracy of depth maps is calculated
only based on the maps with face areas detected. For voxels of
radar data, we train a 3D-CNN model to classify the faces of 12
different people. To recognize the hand gestures, we first detect and
localize the hands by applying the MediaPipe [6] to the RGB, depth,
IR, and Mozart maps. Then we input the cropped hands area into
a lightweight 2D-CNN model to classify the gestures. The radar
voxels are trained using a 3D-CNN model directly to classify 20
different gestures.

The results of different datasets are shown in Figure 14. First,
the baselines perform very poorly for applications in the dark. For
example, the RGB and depth images only achieve 1.66% and 1.54%
mean accuracy in the face recognition task. Second, bothMozart and
Mozart-manual consistently outperform other baselines in different
datasets with various settings. Moreover, Mozart can approach or
even surpass the performance of the manually designed Mozart-
manual in different datasets, which shows that the autoencoder
texture generation is robust and scalable for various applications
and the three loss functions are sufficient to generate high-quality
Mozart maps in most cases.

8.3 Performance in Dynamic Conditions
Now we evaluate Mozart’s performance under dynamic conditions,
including different environments, illumination conditions, and dis-
tances of objects. The results are shown in Figure 16.
Different Environments.We first evaluate the impact of different
environments in human tracking, including the square, room, and
corridor. First, bothMozart-manual andMozart have a robust perfor-
mance across different environments, consistently outperforming
all baselines. Radar performs extremely poorly in rooms/corridors
due to significant multi-path effects. RGB images have extremely
low accuracy for all settings in the dark. Depth and IRmaps perform
poorly in the squares where people walk in a large range (e.g., 5-10
m).
Different Light Conditions. We then evaluate the impact of dif-
ferent light conditions in face recognition, where Light 1, 2, 3 have
sequentially increasing ambient light intensity. First, the perfor-
mance ofMozart andMozart-manual are very stable under different
light conditions and outperforms all baselines except for RGB im-
ages under Light 3 (full illumination). Besides, depth, IR, and radar
also yield a stable performance under different light conditions
as they do not rely on ambient light. However, the performance
of RGB drops drastically with lower light levels since it is highly
susceptible to non-ideal environmental light conditions.
Different Distances of Objects. Lastly, we evaluate the impact of
different distances of objects in face recognition. Almost all modal-
ities perform worse in the far setting (1.5 m) because the size of
face areas is smaller than that under the near setting (0.5 m). How-
ever, both Mozart-manual and Mozart suffer subtle performance
degradation and always outperform all baselines.

8.4 Ablation Study
In this section, we evaluate the effectiveness of different design
components for texture generation based on the human tracking
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(a) Human tracking (b) Face recognition (c) Gesture recognition

Figure 14: Overall accuracy on different datasets. Both Mozart and Mozart-manual consistently
outperform the baselines.

Figure 15: Ablation
Study.

Figure 16: Performance comparison in different environ-
ments, light conditions and distances, respectively.

task. BothMozart-manual andMozart are implemented using differ-
ent component combinations. Specifically, exposing textures based
on the physics model is denoted as C1, redistribution of total reflec-
tion outliers is denoted as C2, and compensation for illumination
attenuation is denoted as C3.

The results are shown in Figure 15. First, the Mozart-manual
with C1+C2 already shows significant accuracy improvement. Sec-
ond, the results with different loss combinations of Mozart all
show significant accuracy improvement (i.e., at least 20%) over
IR maps. Lastly, the performance of Mozart is more stable than
Mozart-manual under different configurations, which shows the
robustness of autoencoder-based texture generation that exploits
the physics texture models.

9 DISCUSSION
In this section, we discuss several future directions of our work.
Applying Mozart maps in multi-modality vision algorithms.
In this paper, we investigate the feasibility of directly applying exist-
ing uni-modal vision algorithms to Mozart. We will study the effect
of using Mozart to substitute a specific modality in multi-modal
vision algorithms. Specifically, the RGB/IR fusion algorithm [38]
will perform worse if we replace IR images with Mozart maps. The
performance degradation comes from the discrepancy between IR
images and Mozart maps features and their different correlation
with RGB images. Therefore, we will study the feasibility of apply-
ing Mozart to multi-modal vision algorithms and propose practical
measures to mitigate the domain gap between Mozart maps and
other vision modalities. Similar issues can be studied when Mozart
maps replace RGB images in RGB-D systems [18], RGB-language
models [17], RGB-audio fusion [36], etc.

Impact ofMozart on future depth systems. In addition to the
new applications enabled by Mozart that we discussed in the paper,
we will study the impact ofMozart on future depth-sensing systems.

• Privacy/Security issues of ToF cameras. ToF cameras were
previously considered privacy-preserving. However, ourwork
has clearly illustrated the potential risk of privacy leakage in
ToF cameras. Therefore, an important and urgent question is
how to use the ToF system in a privacy-preserving manner.
Fortunately, we can easily control howmuchMozart exposes
detailed textures through phase manipulation. Therefore, a
possible paradigm of using ToF systems in the future is to au-
thorize a specific degree of visual privacy exposure according
to application scenarios. On the other hand, the emergence
of systems like Mozart will motivate the exploration of new
privacy-preserving depth measurement principles.

• The new APIs of ToF cameras. Our results show the impor-
tance of opening access to raw phase components on ToF
devices. Future ToF depth systems can provide three API
layers, i.e., the raw data layer providing phase components,
the manipulation layer providing tool chains of phase ma-
nipulation for generating customized maps, and the result
layer providing pre-defined manipulation formulas and auto-
encoder-based texture maps. These new APIs will enable a
new generation of depth sensing in the future.

10 CONCLUSION
In this paper, we present Mozart, a new sensing system that lever-
ages off-the-shelf ToF depth camera to generate high-resolution
and rich-in-texture maps for low-light and dark scenes. Extensive
experiments show that Mozart significantly outperforms existing
sensing technologies and can work on smartphones and edge plat-
forms in real time. In the future, we will study how to combine
the native depth maps and Mozart maps for advanced 3D sensing
applications such as 3D reconstruction of dark environments.
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